Cómo calcular el volumen de un huevo

Escrito por luis olortegui | Traducido por gerardo núñez noriega
  • Comparte
  • Twittea
  • Comparte
  • Pin
  • E-mail
Cómo calcular el volumen de un huevo
El volumen de un huevo puede ser calculado al dividir el huevo en dos porciones. (Ablestock.com/AbleStock.com/Getty Images)

Comprender los conceptos detrás del cálculo puede ser difícil, pero gratificante. Lo anterior es debido a que el cálculo tiene muchas aplicaciones dentro y fuera del salón de clases. Resolver problemas con cálculo requiere un alto grado de atención e imaginación. Averiguar el volumen de un huevo es un buen ejemplo de ello. Usa diferentes conceptos como círculos, elipses y volumen calculado por revoluciones. Al resolver este problema, adquieres una comprensión mayor del cálculo, además de mejorar tus habilidades algebraicas y analíticas.

Nivel de dificultad:
Difícil

Otras personas están leyendo

Instrucciones

  1. 1

    Dibuja la forma de un huevo de forma horizontal. Usa una esfera y una elipse para dibujar el huevo, asegurándote de que se empalmen en su eje vertical. La mitad del elipse es el lado izquierdo del huevo y la mitad de la esfera es el lado derecho.

  2. 2

    Dibuja una línea vertical que divida el huevo en dos partes no iguales. La línea vertical debe coincidir con el eje vertical menor de la elipse. Dibuja una línea horizontal que divida el huevo en dos partes iguales. La línea vertical y la línea horizontal son tu eje XY.

  3. 3

    Etiqueta los puntos donde tu dibujo intersecta tu eje XY. El punto donde ambos ejes se cruzan es el punto (0,0). Los puntos en la línea vertical, de arriba hacia abajo, (0,b) y (0,-b).

    Los puntos en la línea horizontal son, de izquierda a derecha (-a,0) y (0,b). En nuestro huevo, b+b es su altura y a+b es la longitud.

  4. 4

    Divide tu dibujo en dos. En una mitad, mantén la parte izquierda con el elipse. En la otra mitad mantén la parte con el círculo. Borra todo debajo del eje horizontal en ambos dibujos. Al final, deberías tener dos dibujos que se parezcan al cuarto izquierdo superior de una elipse y el cuarto superior derecho de un círculo.

  5. 5

    Calcula el área del círculo. Usa la fórmula de volumen por revolución. Esta formula rota el círculo sobre el eje X para crear un volumen.

    Esta es la ecuación de volumen por revolución:

    Integra la expresión "Pi x (b^2 - X^2)" de [0 a b].

    En donde:

    Pi = 3,141592... (constante del círculo) (b^2 - X^2) = ecuación del círculo al cuadrado "^2" significa "a la segunda potencia) [0 a b] significa el límite de nuestra integral, el cual es el punto en el eje X en donde está dibujado nuestro círculo.

  6. 6

    Resuelve la integral de círculo:

    Factoriza pi: pi x [ integral (b^2 - X^2)] de [0 a b]

    Usa Online Integrator para resolver la integral: pi x [(b^2 x X) - (X^3) de [0,b]]

    Sustituye 0 y b: pi x {[(b^2 x b) - (b^3/3)] - [(b^2 x 0) - (0^3/3)]}

    La respuesta es: (2/3) x pi x b^3

  7. 7

    Calcula el volumen por revolución de la elipse. La elipse se extiende de [-a a 0] a lo largo del eje X. Estos puntos servirán como los límites para nuestra integración. Esta es la fórmula:

    Integra: "pi x ((b^2/a^2) x (a^2 - X^2))" de [-a a 0]

    En donde:

    pi = 3,141592... (constante del círculo) ((b^2/a^2) x (a^2 - X^2)) es la ecuación del elipse al cuadrado "^2" significa "a la segunda potencia"

  8. 8

    Resuelve la integral de la elipse. Factoriza pi: "pi x integral ((b^2/a^2) x (a^2 - X^2))" de [-a a 0]

    Usa Online Integrator para resolver la integral pi x [(1/3)(b^2)(X)(3 - (X^2/a^2 )] de [-a a 0]

    Sustituye -a y 0: pi {[ (1/3)(b^2)(0)(3 - (0^2/a^2)) - [(1/3)(b^2)(-a)(3 - (-a^2 / a^2))]}

    Después de simplificar, la respuesta es: (2/3) x pi x b^2 x a

  9. 9

    Suma el volumen del círculo y el volumen de la esfera. Este es el volumen total del huevo.

    Después de simplificar, la respuesta es: (2/3) x pi x b^2 x (a+b)

  10. 10

    Sustituye los números para a y b. La altura de un huevo grande es de 2 pulgadas (5 cm) y su largo es de 3 pulgadas (7,5 cm). Del ejemplo: altura = b+b = 2 pulgadas b = 1 pulgada (2,5 cm)

    longitud = a+b = 3 pulgadas a + 1 pulgada = 3 pulgadas a = 2 pulgadas

    La respuesta es: (2/3) x pi x b^2 x (a+b)

    Sustituyendo a y b: (2/3) x pi x (1)^2 x (2 + 1) = 2 x pi = 6,2831 pulgadas cúbicas (102,96 cm cúbicos).

No dejes de ver

Filtrar por:
  • Mostrar todos
  • Artículos
  • Galerías de fotos
  • Videos
Ordenar:
  • Más relevante
  • Más popular
  • Más reciente

No se encuentran artículos disponibles

No se encuentran slideshows disponibles

No se encuentran videos disponibles