Hobbies

Cómo usar el coeficiente de correlación de Pearson

Escrito por matthew perdue | Traducido por alejandra medina
Cómo usar el coeficiente de correlación de Pearson

El coeficiente de correlación generalmente se realiza con programas de estadística.

Erik Snyder/Lifesize/Getty Images

El coeficiente de correlación de Person, normalmente denotado como "r", es un valor estadístico que mide la relación linear entre dos variables. Los rangos de valor van de +1 a -1, lo que indica una perfecta relación linear positiva y negativa respectivamente entre ambas variables. El cálculo del coeficiente de correlación normalmente se realiza con programas de estadística, como SPSS y SAS, para dar los valores posibles más precisos en estudios científicos. Su interpretación y uso varía de acuerdo con el contexto y propósito del respectivo estudio en donde se calcula.

Nivel de dificultad:
Moderadamente difícil

Otras personas están leyendo

Necesitarás

  • Calculadora científica o programa de estadística
  • Valores críticos de la tabla del coeficiente de correlación

Lista completaMinimizar

Instrucciones

  1. 1

    Identifica el dependiente variable que se probará entre dos observaciones derivadas independientemente. Uno de los requisitos del coeficiente de correlación de Pearson es que las dos variables que se comparan deben observarse o medirse de manera independiente para eliminar cualquier resultado sesgado.

  2. 2

    Calcula el coeficiente de correlación de Pearson. Para cantidades grandes de información, el calculo puede ser tedioso. Además de los varios programas de estadística, muchas calculadoras científicas pueden calcular el valor.

  3. 3

    Reporta un valor de correlación cercano a 0 como un indicador de que no hay relación linear entre las dos variables. Conforme el coeficiente de correlación se acerque al 0, los valores se vuelven menos correlacionados, lo que identifica las variables que no pueden ser relacionadas entre sí.

  4. 4

    Reporta un valor de correlación cercano al 1 como indicador de que existe una relación linear positiva entre las dos variables. Un valor mayor a cero que se acerque a 1 da como resultado una mayor correlación positiva entre la información. Conforme una variable aumenta cierta cantidad, la otra aumenta en cantidad correspondiente. La interpretación debe determinarse de acuerdo con el contexto del estudio.

  5. 5

    Reporta un valor de correlación cercano a -1 como indicador de que hay una relación linear negativa entre las dos variables. Conforme el coeficiente se acerca a -1, las variables se vuelven negativamente más correlacionadas, lo que indica que conforme una variable aumenta, la variable disminuye por una cantidad correspondiente. La interpretación, de nuevo, debe determinarse de acuerdo con el contexto del estudio.

  6. 6

    Interpreta el coeficiente de correlación de acuerdo con el contexto de los datos particulares. El valor de correlación es esencialmente un valor arbitrario que debe aplicarse de acuerdo con las variables que se comparan. Por ejemplo, un valor r de 0.912 indica una relación linear positiva muy fuerte entre las dos variables. En un estudio donde se comparan dos variables que normalmente se identifican como relacionadas, estos resultados dan evidencia de que una variable puede afectar de manera positiva a la otra, lo que resulta un caso para mayor investigación entre las dos. Sin embargo, el mismo valor r en un estudio que compara dos variables donde está probado que tienen una relación linear positiva puede identificar un error en la información u otros problemas potenciales en el diseño experimental. Por ello, es importante entender el contexto de la información cuando se reporta e interpreta el coeficiente de correlación de Pearson.

  7. 7

    Determina la importancia de los resultados. Esto se logra con el uso del coeficiente de correlación, grados de libertad y una tabla de valores críticos del coeficiente de correlación. Los grados de libertad se calculan como el número de las dos observaciones menos 2. Con este valor, identifica el valor crítico correspondiente en la tabla de correlación para una prueba de 0.05 y 0.01 que identifique 95 y 99 por ciento de nivel de confiabilidad respectivamente. Compara el valor crítico al coeficiente de correlación previamente calculado. Si el coeficiente de correlación es mayor, los resultados son importantes.

Consejos y advertencias

  • Los intervalos confiables para el coeficiente de correlación pueden usarse en estudios de población.

No dejes de leer...

comentarios

Filtrar por:
  • Mostrar todos
  • Artículos
  • Galerías de fotos
  • Videos
Ordenar:
  • Más relevante
  • Más popular
  • Más reciente

No se encuentran artículos disponibles

No se encuentran slideshows disponibles

No se encuentran videos disponibles

Copyright © 1999-2014 Demand Media, Inc. Acerca de

El uso de este sitio constituye la aceptación de los términos y política de privacidad de eHow. Ad Choices es-US

Demand Media