Cómo simplificar radicales tomando las raíces del denominador y el numerador

Escrito por andrew latham Google | Traducido por enrique pereira vivas
  • Comparte
  • Twittea
  • Comparte
  • Pin
  • E-mail
Cómo simplificar radicales tomando las raíces del denominador y el numerador
Cómo simplificar radicales tomando las raíces del denominador y el numerador. (Hemera Technologies/AbleStock.com/Getty Images)

Un radical de una fracción con grandes números en su denominador y numerador puede parecer abrumador si estás tratando de calcularlo directamente. A menudo se puede simplificar como un término mediante la reescritura como la división de dos radicales y tomando las raíces del numerador y el denominador. El numerador es el número o término por encima de la línea de fracción y el denominador es el número o término por debajo de la línea de fracción. Este método de simplificación de radicales se conoce como la aplicación de la regla del cociente.

Nivel de dificultad:
Moderadamente difícil

Otras personas están leyendo

Instrucciones

  1. 1

    Comprueba que el numerador y el denominador no son iguales a cero y comprueba el grado de la raíz. El grado de la raíz es el número sobre el signo radical. Si el numerador o el denominador son iguales a cero, no se puede utilizar este método. Si el grado de la raíz es par, entonces el numerador y el denominador deben ser números positivos. Para ilustrar, la raíz cúbica de -2/5 se puede simplificar utlizando este método, mientras que la raíz cuadrada, una raíz de grado uniforme, de -2/5 no se puede.

  2. 2

    Vuelve a escribir el radical como la división o fracción de dos raíces. Esta es la regla del cociente, que establece que siempre que el numerador y el denominador no sean iguales a cero, pueden ser representados como una división de la raíz. Por ejemplo, la raíz cuadrada de 2/25 se puede simplificar como la raíz cuadrada de 2 dividido por la raíz cuadrada de 25.

  3. 3

    Calcula la raíz del numerador y el denominador. Por ejemplo, en el ejemplo anterior, la raíz cuadrada de 25 es 5 y la raíz cuadrada de 2 no se puede calcular exactamente.

  4. 4

    Vuelve a escribir el radical utilizando sus valores simplificados. Por ejemplo, el ejemplo anterior se puede simplificar a la raíz cuadrada de 2 dividida entre 5, o (2^1/2)/5 en forma exponencial.

Consejos y advertencias

  • Otra forma de trabajar con los radicales y las fracciones es tratarlas como términos con un exponente y utilizar las propiedades de la división de operaciones exponenciales.

No dejes de ver

Filtrar por:
  • Mostrar todos
  • Artículos
  • Galerías de fotos
  • Videos
Ordenar:
  • Más relevante
  • Más popular
  • Más reciente

No se encuentran artículos disponibles

No se encuentran slideshows disponibles

No se encuentran videos disponibles