Finanzas

Cómo factorizar una expresión cuadrática

Escrito por ehow contributor | Traducido por gabriela nungaray
Cómo factorizar una expresión cuadrática

Sigue los pasos.

Stockbyte/Stockbyte/Getty Images

Cómo factorizar una expresión cuadrática. Factoriza la expresión cuadrática x ² + (a + b) x + ab reescribiéndola como el producto de dos binomios (x + a) X (x + b). Al permitir que (a + b) = c y (ab) = d, puedes reconocer la forma familiar de la ecuación cuadrática x ² + cx + d. La factorización es el proceso inverso de la multiplicación y es la forma más sencilla para resolver ecuaciones cuadráticas.

Nivel de dificultad:
Moderado

Otras personas están leyendo

Instrucciones

    Factor cuadrático ecuaciones de la forma ex² +cx +d, e=1

  1. 1

    Utiliza la ecuación x ²-10x 24 como un ejemplo y factorízala como el producto de dos binomios.

  2. 2

    Reescribe esta ecuación como sigue: x ²-10x 24 = (x?) (X?).

  3. 3

    Rellena los términos que faltan de los binomios con los dos números enteros a y b cuyo producto sea +24, el término constante de x ²-10x +24, y cuya suma sea -10, el coeficiente del término x. Puesto que (-6) X (-4) = 24 y (-6) + (-4) = -10, entonces los factores correctos de 24 son -6 y -4. Así la ecuación x ²-10x 24 = (x-4) (x-6).

  4. 4

    Comprueba que los factores binomiales son correctos al multiplicarlos juntos y comparándolos con la expresión cuadrática de este ejemplo.

    Factor cuadrático ecuaciones de la forma ex² +cx +d, e>1

  1. 1

    Usa la ecuación 3x +5 x ²-2 como un ejemplo y encuentra los factores binomiales.

  2. 2

    Factoriza la ecuación 3x +5 x ²-2 desglosando el término 5x en la suma de dos términos, ax y bx. Elige a y b para que se sume a 5 y cuando se multiplican entre sí dan el mismo producto que el producto de los coeficientes de la primera y la última palabra de la ecuación 3x +5 x ²-2. Puesto que (6-1) = 5 y (6) X (-1) = (3) X (-2) a continuación, 6 y -1 son los coeficientes correctos para el término x.

  3. 3

    Vuelve a escribir los coeficientes de x como la suma de 6 y -1 para obtener: 3x ² + (6-1) x -2.

  4. 4

    Distribuye la x para ambos 6 y -1 y obtén: 3x + 6 x ²-x -2. Entonces factoriza agrupando: 3x (x +2) + (-1) (x 2) = (3x-1) (x +2). Esta es la respuesta final.

  5. 5

    Verifica el resultado de multiplicar los binomios (3x-1) (x +2) y compáralos con la ecuación de segundo grado de este ejemplo.

Consejos y advertencias

  • No se pueden factorizar todas las ecuaciones cuadráticas. En esos casos especiales, tienes que completar el cuadrado o utilizar la fórmula cuadrática.

No dejes de leer...

comentarios

Filtrar por:
  • Mostrar todos
  • Artículos
  • Galerías de fotos
  • Videos
Ordenar:
  • Más relevante
  • Más popular
  • Más reciente

No se encuentran artículos disponibles

No se encuentran slideshows disponibles

No se encuentran videos disponibles

Copyright © 1999-2014 Demand Media, Inc. Acerca de

El uso de este sitio constituye la aceptación de los términos y política de privacidad de eHow. Ad Choices es-US

Demand Media